Automatic Image Annotation and Retrieval using Multi-Instance Multi-Label Learning
نویسندگان
چکیده
منابع مشابه
Automatic Image Annotation and Retrieval using Multi - Instance Multi - Label Learning
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework which is associated with multiple class labels for Image Annotation. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples we have taken a survey on MIML Boost, MIMLSVM,...
متن کاملMulti-Modal Image Annotation with Multi-Label Multi-Instance LDA
This paper studies the problem of image annotation in a multi-modal setting where both visual and textual information are available. We propose Multimodal Multi-instance Multi-label Latent Dirichlet Allocation (M3LDA), where the model consists of a visual-label part, a textual-label part and a labeltopic part. The basic idea is that the topic decided by the visual information and the topic deci...
متن کاملAutomatic Image Annotation Using Modified Multi-label Dictionary Learning
Automatic image annotation has attracted lots of research interest, and effective method for image annotation. Find effectively the correlation among labels and images is a critical task for multi-label learning. Most of the existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between label and features of images untouched. I...
متن کاملMulti-instance multi-label learning
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the Miml...
متن کاملMulti-instance multi-label active learning
Multi-instance multi-label learning (MIML) has achieved success in various applications, especially those involving complicated learning objects. Along with the enhancing of expressive power, the cost of annotating a MIML example also increases significantly. In this paper, we propose a novel active learning approach to reduce the labeling cost of MIML. The approach actively query the most valu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bonfring International Journal of Advances in Image Processing
سال: 2011
ISSN: 2250-1053,2277-503X
DOI: 10.9756/bijaip.1001